

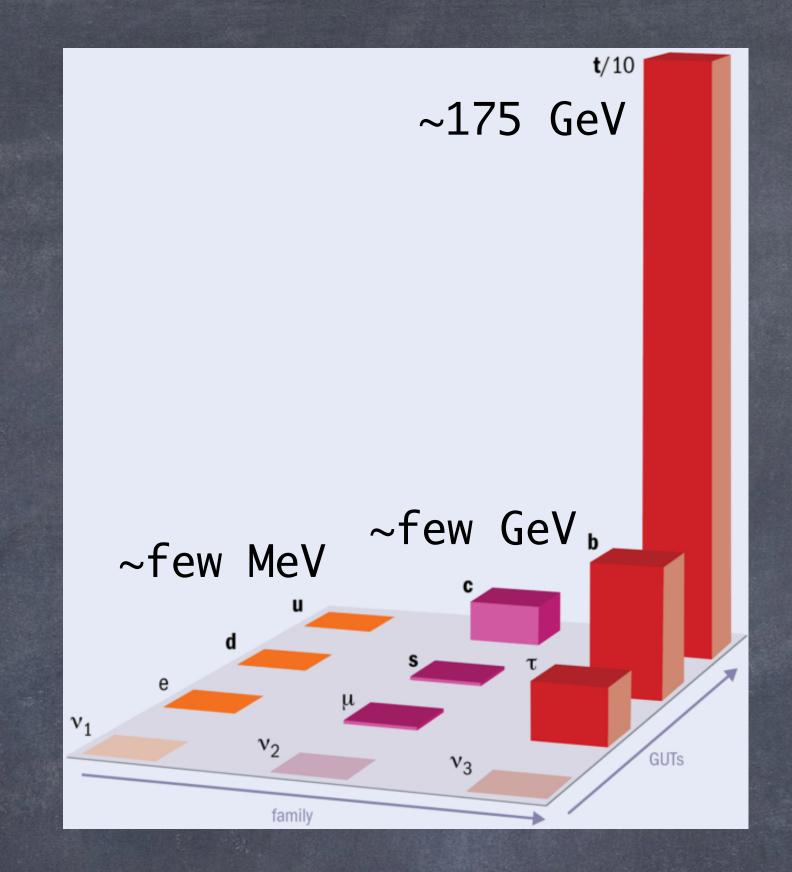
Carlos Alvarado Vassar College

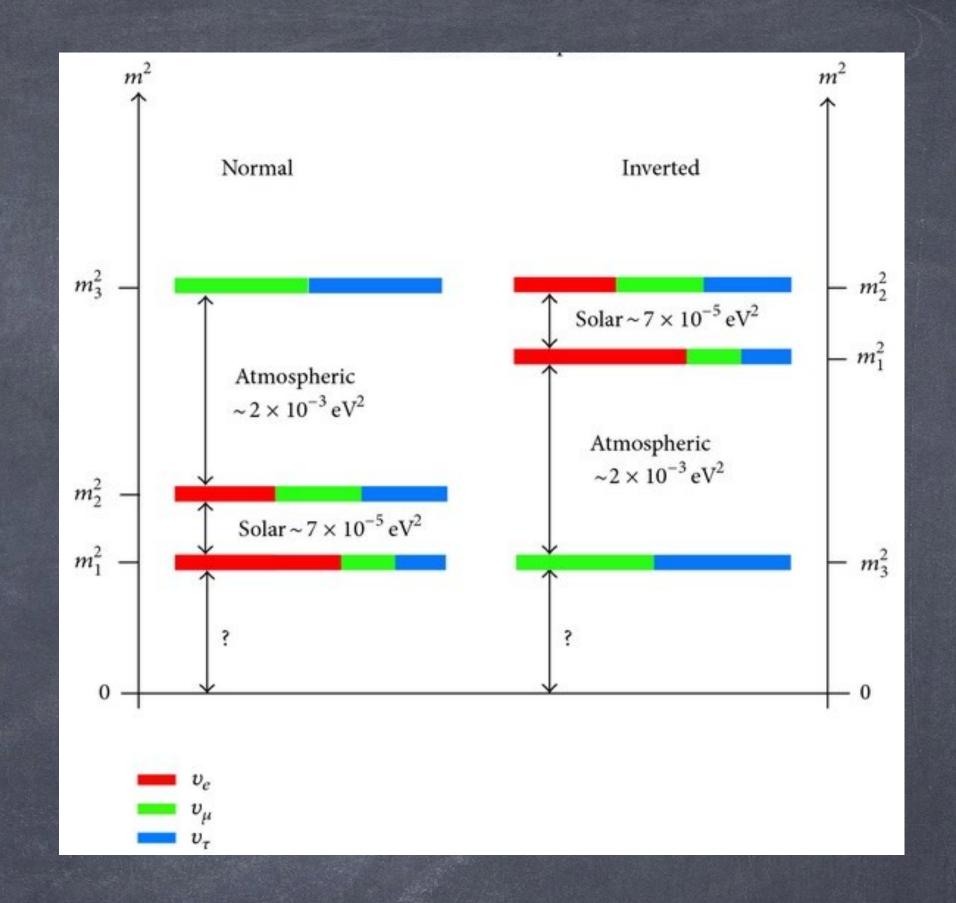
DCPIHEP Workshop @ Colima January 11th 2024

*with Janelly Bautista and Alex Stuart 2312.15391

Motivation

Flavor puzzle





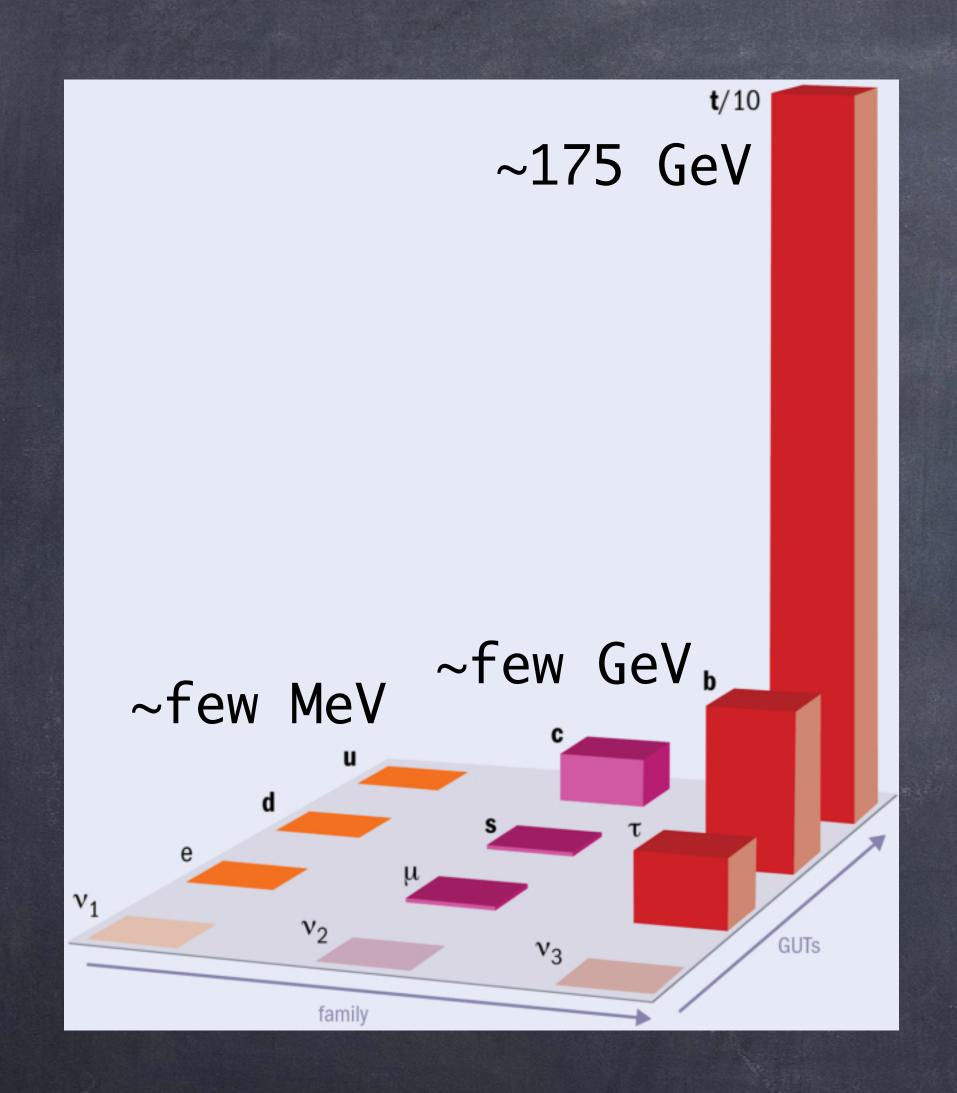
Measurement of the neutrino reactor angle

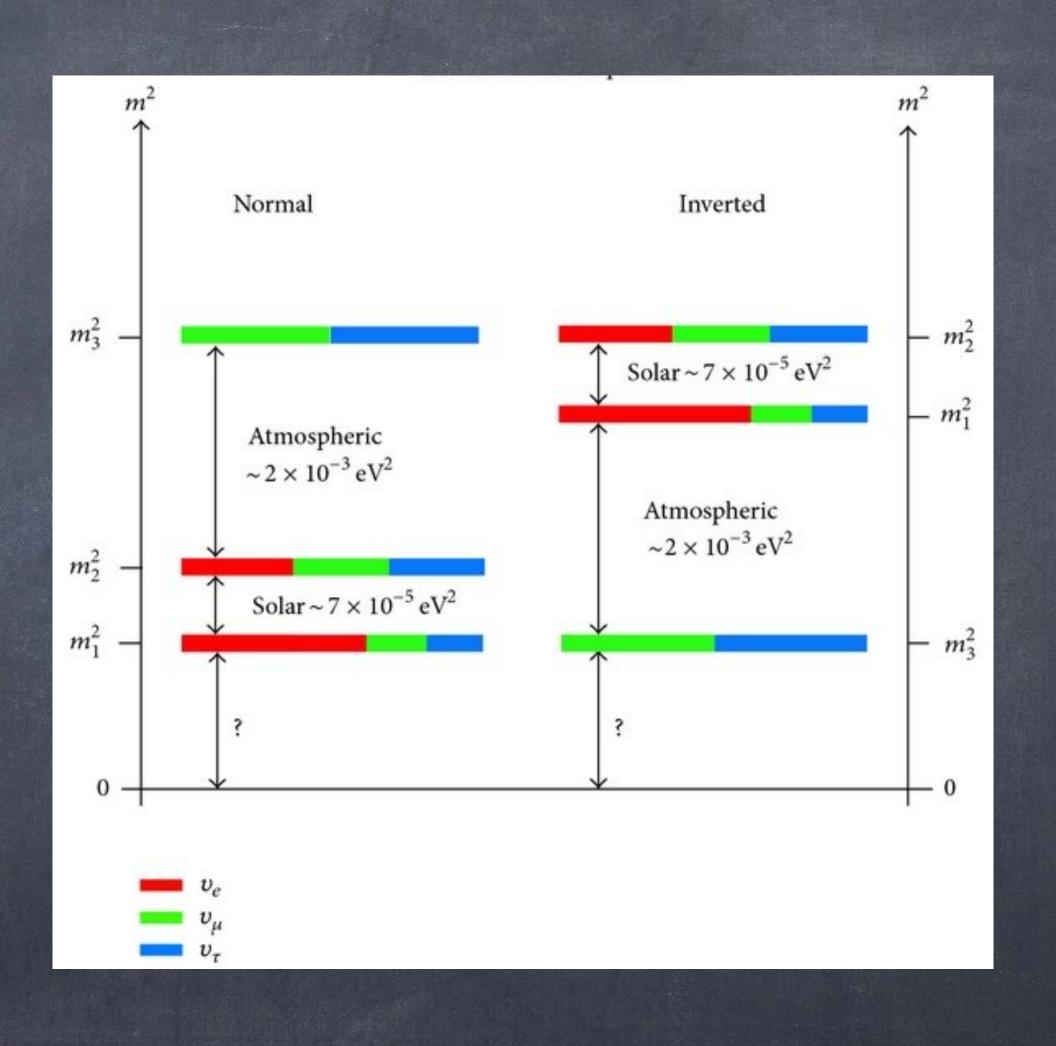
DAYA BAY / RENO / DOUBLE CHOOZ

Ongoing search to determine Dirac-type leptonic CP-violating phase

T2K / NOVA

The flavor puzzle





The Maki-Nakawa-Sakata-Pontecorvo Matrix

$$-\mathcal{L}_{SM} \supset \frac{g}{\sqrt{2}} \sum_{\ell=e,\mu,\tau} \overline{\ell}^{-} \gamma^{\mu} P_L \nu W_{\mu}^{-} + \text{H.c.}$$

$$U_{
m MNSP} \equiv U_e^{\dagger} U_{
u} = \left(egin{array}{ccc} U_{e1} & U_{e2} & U_{e3} \ U_{\mu 1} & U_{\mu 2} & U_{\mu 3} \ U_{ au 1} & U_{ au 2} & U_{ au 3} \ \end{array}
ight)$$

The Particle Data Group (PDG) parametrization

$$U_{\text{MNSP}} = \begin{pmatrix} c_{12} c_{13} & s_{12} c_{13} & s_{13} e^{-i\delta_{\text{CP}}} \\ -s_{12} c_{23} - c_{12} s_{13} s_{23} e^{i\delta_{\text{CP}}} & c_{12} c_{23} - s_{12} s_{13} s_{23} e^{i\delta_{\text{CP}}} & c_{13} s_{23} \\ s_{12} s_{23} - c_{12} s_{13} c_{23} e^{i\delta_{\text{CP}}} & -c_{12} s_{23} - s_{12} s_{13} c_{23} e^{i\delta_{\text{CP}}} & c_{13} c_{23} \end{pmatrix}$$

n=3 neutrinos:

3 mixing angles $\theta_{ij} \in [0, \pi/2]$

1 complex phase $\delta \in [0, 2\pi]$

NuFIT 5.2 (2022)

		Normal Ord	lering (best fit)	Inverted Ordering ($\Delta \chi^2 = 6.4$)					
		bfp $\pm 1\sigma$	3σ range	bfp $\pm 1\sigma$	3σ range				
	$\sin^2 \theta_{12}$	$0.303^{+0.012}_{-0.012}$	$0.270 \rightarrow 0.341$	$0.303^{+0.012}_{-0.011}$	$0.270 \rightarrow 0.341$				
data	$\theta_{12}/^{\circ}$	$33.41^{+0.75}_{-0.72}$	$31.31 \rightarrow 35.74$	$33.41^{+0.75}_{-0.72}$	$31.31 \rightarrow 35.74$				
	$\sin^2 \theta_{23}$	$0.451^{+0.019}_{-0.016}$	$0.408 \rightarrow 0.603$	$0.569^{+0.016}_{-0.021}$	$0.412 \rightarrow 0.613$				
sphe	$\theta_{23}/^{\circ}$	$42.2^{+1.1}_{-0.9}$	$39.7 \rightarrow 51.0$	$49.0^{+1.0}_{-1.2}$	$39.9 \rightarrow 51.5$				
atmospheric	$\sin^2 \theta_{13}$	$0.02225^{+0.00056}_{-0.00059}$	$0.02052 \to 0.02398$	$0.02223^{+0.00058}_{-0.00058}$	$0.02048 \to 0.02416$				
SK a	$\theta_{13}/^{\circ}$	$8.58^{+0.11}_{-0.11}$	$8.23 \rightarrow 8.91$	$8.57^{+0.11}_{-0.11}$	$8.23 \rightarrow 8.94$				
with	$\delta_{\mathrm{CP}}/^{\circ}$	232^{+36}_{-26}	$144 \rightarrow 350$	276^{+22}_{-29}	$194 \rightarrow 344$				
	$\frac{\Delta m_{21}^2}{10^{-5} \text{ eV}^2}$	$7.41^{+0.21}_{-0.20}$	$6.82 \rightarrow 8.03$	$7.41^{+0.21}_{-0.20}$	$6.82 \rightarrow 8.03$				
	$\frac{\Delta m_{3\ell}^2}{10^{-3} \text{ eV}^2}$	$+2.507^{+0.026}_{-0.027}$	$+2.427 \rightarrow +2.590$	$-2.486^{+0.025}_{-0.028}$	$-2.570 \rightarrow -2.406$				

NuFIT 5.2 (2022)

"solar"

"atmospheric"

"reactor"

					3.L (LULL)	
		Normal Ord	dering (best fit)	Inverted Ordering ($\Delta \chi^2 = 6.4$)		
		bfp $\pm 1\sigma$	3σ range	bfp $\pm 1\sigma$	3σ range	
	$\sin^2 \theta_{12}$	$0.303^{+0.012}_{-0.012}$	$0.270 \rightarrow 0.341$	$0.303^{+0.012}_{-0.011}$	$0.270 \rightarrow 0.341$	
data	$\theta_{12}/^{\circ}$	$33.41^{+0.75}_{-0.72}$	$31.31 \rightarrow 35.74$	$33.41^{+0.75}_{-0.72}$	$31.31 \rightarrow 35.74$	
with SK atmospheric da	$\sin^2 \theta_{23}$	$0.451^{+0.019}_{-0.016}$	$0.408 \rightarrow 0.603$	$0.569^{+0.016}_{-0.021}$	$0.412 \rightarrow 0.613$	
	$\theta_{23}/^{\circ}$	$42.2^{+1.1}_{-0.9}$	$39.7 \rightarrow 51.0$	$49.0^{+1.0}_{-1.2}$	$39.9 \rightarrow 51.5$	
	$\sin^2 \theta_{13}$	$0.02225^{+0.00056}_{-0.00059}$	$0.02052 \rightarrow 0.02398$	$0.02223^{+0.00058}_{-0.00058}$	$0.02048 \rightarrow 0.02416$	
	$\theta_{13}/^{\circ}$	$8.58^{+0.11}_{-0.11}$	$8.23 \rightarrow 8.91$	$8.57^{+0.11}_{-0.11}$	$8.23 \rightarrow 8.94$	
	$\delta_{\mathrm{CP}}/^{\circ}$	232^{+36}_{-26}	$144 \rightarrow 350$	276^{+22}_{-29}	$194 \rightarrow 344$	
	$\frac{\Delta m_{21}^2}{10^{-5} \text{ eV}^2}$	$7.41^{+0.21}_{-0.20}$	$6.82 \rightarrow 8.03$	$7.41^{+0.21}_{-0.20}$	$6.82 \rightarrow 8.03$	
	$\frac{\Delta m_{3\ell}^2}{10^{-3} \text{ eV}^2}$	$+2.507^{+0.026}_{-0.027}$	$+2.427 \rightarrow +2.590$	$-2.486^{+0.025}_{-0.028}$	$-2.570 \to -2.406$	

so tiny! (2012)

$\lceil~0.803\sim0.845$	$0.514\sim0.578$	$0.142\sim0.155$
$0.233\sim0.505$	$0.460\sim0.693$	$0.630\sim0.779$
$0.262\sim0.525$	$0.473\sim0.702$	$0.610\sim0.762$ $ footnote{}$

NuFIT 5.2 (2022)

		Normal Ord	lering (best fit)	Inverted Ordering ($\Delta \chi^2 = 6.4$)		
		bfp $\pm 1\sigma$	3σ range	bfp $\pm 1\sigma$	3σ range	
	$\sin^2 \theta_{12}$	$0.303^{+0.012}_{-0.012}$	$0.270 \rightarrow 0.341$	$0.303^{+0.012}_{-0.011}$	$0.270 \rightarrow 0.341$	
data	$\theta_{12}/^{\circ}$	$33.41^{+0.75}_{-0.72}$	$31.31 \rightarrow 35.74$	$33.41^{+0.75}_{-0.72}$	$31.31 \rightarrow 35.74$	
100	$\sin^2 \theta_{23}$	$0.451^{+0.019}_{-0.016}$	$0.408 \rightarrow 0.603$	$0.569^{+0.016}_{-0.021}$	$0.412 \rightarrow 0.613$	
sphe	$\theta_{23}/^{\circ}$	$42.2^{+1.1}_{-0.9}$	$39.7 \rightarrow 51.0$	$49.0^{+1.0}_{-1.2}$	$39.9 \rightarrow 51.5$	
atmospheric	$\sin^2 \theta_{13}$	$0.02225^{+0.00056}_{-0.00059}$	$0.02052 \to 0.02398$	$0.02223^{+0.00058}_{-0.00058}$	$0.02048 \to 0.02416$	
SK	$\theta_{13}/^{\circ}$	$8.58^{+0.11}_{-0.11}$	$8.23 \rightarrow 8.91$	$8.57^{+0.11}_{-0.11}$	$8.23 \rightarrow 8.94$	
with	$\delta_{\mathrm{CP}}/^{\circ}$	232^{+36}_{-26}	$144 \rightarrow 350$	276^{+22}_{-29}	$194 \rightarrow 344$	
	$\frac{\Delta m_{21}^2}{10^{-5} \text{ eV}^2}$	$7.41^{+0.21}_{-0.20}$	$6.82 \rightarrow 8.03$	$7.41^{+0.21}_{-0.20}$	$6.82 \rightarrow 8.03$	
	$\frac{\Delta m_{3\ell}^2}{10^{-3} \text{ eV}^2}$	$+2.507^{+0.026}_{-0.027}$	$+2.427 \rightarrow +2.590$	$-2.486^{+0.025}_{-0.028}$	$-2.570 \rightarrow -2.406$	

"solar"

while it may be 0, fit consistent with $\approx |\pi/2|$

The Framework

The Klein Symmetry

Everett & Stuart (1501.044336)

Based in the bottom-up approach for residual Klein symmetries

What is this about?

- Assumption I: neutrinos are Majorana

$$M_{
u}^T = M_{
u}$$
 complex symmetric

- Assumption II: a flavor group at high energy breaks down to a residual symmetry ${\cal K}$ at low energies

$$G_{\mathrm{flavor}} \longrightarrow K$$

$$U_{\nu}^{T} M_{\nu} U_{\nu} = M_{\nu}^{\text{Diag}} = \text{Diag}(m_1, m_2, m_3) = \text{Diag}(|m_1|e^{-i\alpha_1}, |m_2|e^{-i\alpha_2}, |m_3|e^{-i\alpha_3})$$

$$U_e^{\dagger} M_e U_e = M_e^{\text{Diag}} = \text{Diag}(|m_e|^2, |m_{\mu}|^2, |m_{\tau}|^2)$$

$$M_e = m_e m_e^{\dagger}$$

$$U_{\rm MNSP} = U_e^{\dagger} U_{\nu}$$

$$U_{\nu}^{T} M_{\nu} U_{\nu} = M_{\nu}^{\text{Diag}} = \text{Diag}(m_1, m_2, m_3) = \text{Diag}(|m_1|e^{-i\alpha_1}, |m_2|e^{-i\alpha_2}, |m_3|e^{-i\alpha_3})$$

$$U_e^{\dagger} M_e U_e = M_e^{\text{Diag}} = \text{Diag}(|m_e|^2, |m_{\mu}|^2, |m_{\tau}|^2)$$

$$M_
u^{
m Diag} = Q_
u^T U_
u^T M_
u U_
u Q_
u$$
 $Q_
u = 1, -1$

$$M_e^{
m Diag} = Q_e^{\dagger} U_e^{\dagger} M_e U_e Q_e$$
 $Q_e = e^{i \beta_i}$

$$Q_e = e^{i\beta_i}$$

$$M_e = m_e m_e^{\dagger}$$

$$U_{\text{MNSP}} = U_e^{\dagger} U_{\nu} = Q_e U_e^{\dagger} U_{\nu} Q_{\nu}$$

include phases in the Q's

$$U_{\nu}^{T} M_{\nu} U_{\nu} = M_{\nu}^{\text{Diag}} = \text{Diag}(m_1, m_2, m_3) = \text{Diag}(|m_1|e^{-i\alpha_1}, |m_2|e^{-i\alpha_2}, |m_3|e^{-i\alpha_3})$$

$$U_e^{\dagger} M_e U_e = M_e^{\text{Diag}} = \text{Diag}(|m_e|^2, |m_{\mu}|^2, |m_{\tau}|^2)$$

$$M_e = m_e m_e^{\dagger}$$

$$M_{\nu}^{\text{Diag}} = Q_{\nu}^T U_{\nu}^T M_{\nu} U_{\nu} Q_{\nu}$$

$$M_e^{\mathrm{Diag}} = Q_e^{\dagger} U_e^{\dagger} M_e U_e Q_e$$

$$Q_{\nu} = 1, -1$$

$$Q_e = e^{i\beta_i}$$

$$U_{\text{MNSP}} = U_e^{\dagger} U_{\nu} = Q_e U_e^{\dagger} U_{\nu} Q_{\nu}$$

include phases in the Q's

possible invariances of the ν matrix?

$$M_{\nu}^{\mathrm{Diag}} = Q_{\nu}^{T} M_{\nu}^{\mathrm{Diag}} Q_{\nu}$$

$$U_{\nu}^{T} M_{\nu} U_{\nu} = M_{\nu}^{\text{Diag}} = \text{Diag}(m_1, m_2, m_3) = \text{Diag}(|m_1|e^{-i\alpha_1}, |m_2|e^{-i\alpha_2}, |m_3|e^{-i\alpha_3})$$

$$U_e^{\dagger} M_e U_e = M_e^{\text{Diag}} = \text{Diag}(|m_e|^2, |m_{\mu}|^2, |m_{\tau}|^2)$$

$$M_e = m_e m_e^{\dagger}$$

$$M_{
u}^{
m Diag} = Q_{
u}^T U_{
u}^T M_{
u} U_{
u} Q_{
u}$$
 $M_{e}^{
m Diag} = Q_{e}^{\dagger} U_{e}^{\dagger} M_{e} U_{e} Q_{e}$ $Q_{e} = e^{i \beta_{i}}$

 $U_{\text{MNSP}} = U_e^{\dagger} U_{\nu} = Q_e U_e^{\dagger} U_{\nu} Q_{\nu}$

include phases in the Q's

possible invariances of the ν matrix?

$$M_{\nu}^{\rm Diag} = Q_{\nu}^T M_{\nu}^{\rm Diag} Q_{\nu}$$

$$G_0^{\text{Diag}} = \mathbf{1}_{3\times 3} \qquad G_1^{\text{Diag}} = \begin{pmatrix} \mathbf{1} & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & -1 \end{pmatrix}, \ G_2^{\text{Diag}} = \begin{pmatrix} -1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -1 \end{pmatrix}, \ G_3^{\text{Diag}} = \begin{pmatrix} -1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

$$(G_i^{\text{Diag}})^2 = 1$$
, for $i = 0, 1, 2, 3$, $G_0^{\text{Diag}}G_i^{\text{Diag}} = G_i^{\text{Diag}}$, for $i = 1, 2, 3$, $G_i^{\text{Diag}}G_j^{\text{Diag}} = G_k^{\text{Diag}}$, for $i \neq j \neq k \neq 0$

Klein group $K \simeq Z_2 \times Z_2$

also an invariance of the undiagonalized matrix

$$M_{
u} = G_i^T M_{
u} G_i$$

$$G_i = U_{\nu} G_i^{\mathrm{Diag}} U_{\nu}^{\dagger}$$

 $G_i = U_{\nu} G_i^{\mathrm{Diag}} U_{\nu}^{\dagger}$ $Z_2 \times Z_2$ group again!

After an Euler-angle parametrization of $U_{
u}$

$$G_{1} = \begin{pmatrix} (G_{1})_{11} & (G_{1})_{12} & (G_{1})_{13} \\ (G_{1})_{12}^{*} & (G_{1})_{22} & (G_{1})_{23} \\ (G_{1})_{13}^{*} & (G_{1})_{23}^{*} & (G_{1})_{33} \end{pmatrix}, G_{2} = \begin{pmatrix} (G_{2})_{11} & (G_{2})_{12} & (G_{2})_{13} \\ (G_{2})_{12}^{*} & (G_{2})_{22} & (G_{2})_{23} \\ (G_{2})_{13}^{*} & (G_{2})_{23}^{*} & (G_{2})_{33} \end{pmatrix}$$

$$G_{3} = \begin{pmatrix} -c'_{13} & e^{-i\delta}s_{23}s'_{13} & -e^{-i\delta}c_{23}s'_{13} \\ e^{i\delta}s_{23}s'_{13} & s^{2}_{23}c'_{13} - c^{2}_{23} & -c^{2}_{13}s'_{23} \\ -e^{i\delta}c_{23}s'_{13} & -c^{2}_{13}s'_{23} & c^{2}_{23}c'_{13} - s^{2}_{23} \end{pmatrix},$$

the $Z_2 imes Z_2$ group for each low-energy input $heta_{ij}, \delta$! In addition you get $(M_{
u})_{mn}(heta_{ij},\delta)$

Tribimaximal mixing

- Adequate prior to 2010's since $heta_{13}=0$

- One column maximally-mixed across THREE entries ("tri")

- One column maximally-mixed across TWO entries ("bi")

- Disfavored after 2010's measurements

$$U^{\text{TBM}} = \begin{pmatrix} \sqrt{\frac{2}{3}} & \frac{1}{\sqrt{3}} & 0\\ -\frac{1}{\sqrt{6}} & \frac{1}{\sqrt{3}} & \frac{1}{\sqrt{2}}\\ -\frac{1}{\sqrt{6}} & \frac{1}{\sqrt{3}} & -\frac{1}{\sqrt{2}} \end{pmatrix}$$

Extensively studied under A_4

$$S^2 = T_3^3 = (ST_3)^3 = 1$$

Harrison et al (2002)

He et al (2003)

Xing et al (2006)

etc

Bitrimaximal mixing

- Predicts $\theta_{13} \neq 0$. Favored after Daya Bay

- ONE row and ONE column both maximally-mixed across THREE entries

$$U^{\text{BTM}} = \frac{1}{\sqrt{3}} \begin{pmatrix} \frac{1}{2} \left(1 + \sqrt{3} \right) & 1 & \frac{1}{2} \left(\sqrt{3} - 1 \right) \\ -1 & 1 & 1 \\ \frac{1}{2} \left(1 - \sqrt{3} \right) & 1 & \frac{1}{2} \left(-1 - \sqrt{3} \right) \end{pmatrix}$$

Under $\Delta(96)$, $\Delta(96) \times SU(5)$

Toorop et al (2011)

G. J. Ding (2012)

King et al (2013)

etc

A common feature

$$U^{\text{TBM}} = \begin{pmatrix} \sqrt{\frac{2}{3}} & \frac{1}{\sqrt{3}} & 0\\ -\frac{1}{\sqrt{6}} & \frac{1}{\sqrt{3}} & \frac{1}{\sqrt{2}} \\ -\frac{1}{\sqrt{6}} & \frac{1}{\sqrt{3}} & -\frac{1}{\sqrt{2}} \end{pmatrix}$$

$$U^{\text{BTM}} = \frac{1}{\sqrt{3}} \begin{pmatrix} \frac{1}{2} \left(1 + \sqrt{3} \right) & 1 & \frac{1}{2} \left(\sqrt{3} - 1 \right) \\ -1 & 1 & 1 \\ \frac{1}{2} \left(1 - \sqrt{3} \right) & 1 & \frac{1}{2} \left(-1 - \sqrt{3} \right) \end{pmatrix}$$

Look for vector
$$\begin{pmatrix} v_1 \\ v_2 \\ v_3 \end{pmatrix}$$
 associated with +1 eigenvalue under $\frac{1}{3}\begin{pmatrix} -1 & 2 & 2 \\ 2 & -1 & 2 \\ 2 & 2 & -1 \end{pmatrix}$

$$v_1 = v_2 = v_3$$

$$U_{
u}$$
 trimaximality

$$\Leftrightarrow$$

$$M_{
u}$$
 invariance under $\frac{1}{3} \begin{pmatrix} -1 & 2 & 2 \\ 2 & -1 & 2 \\ 2 & 2 & -1 \end{pmatrix}$ a.k.a S

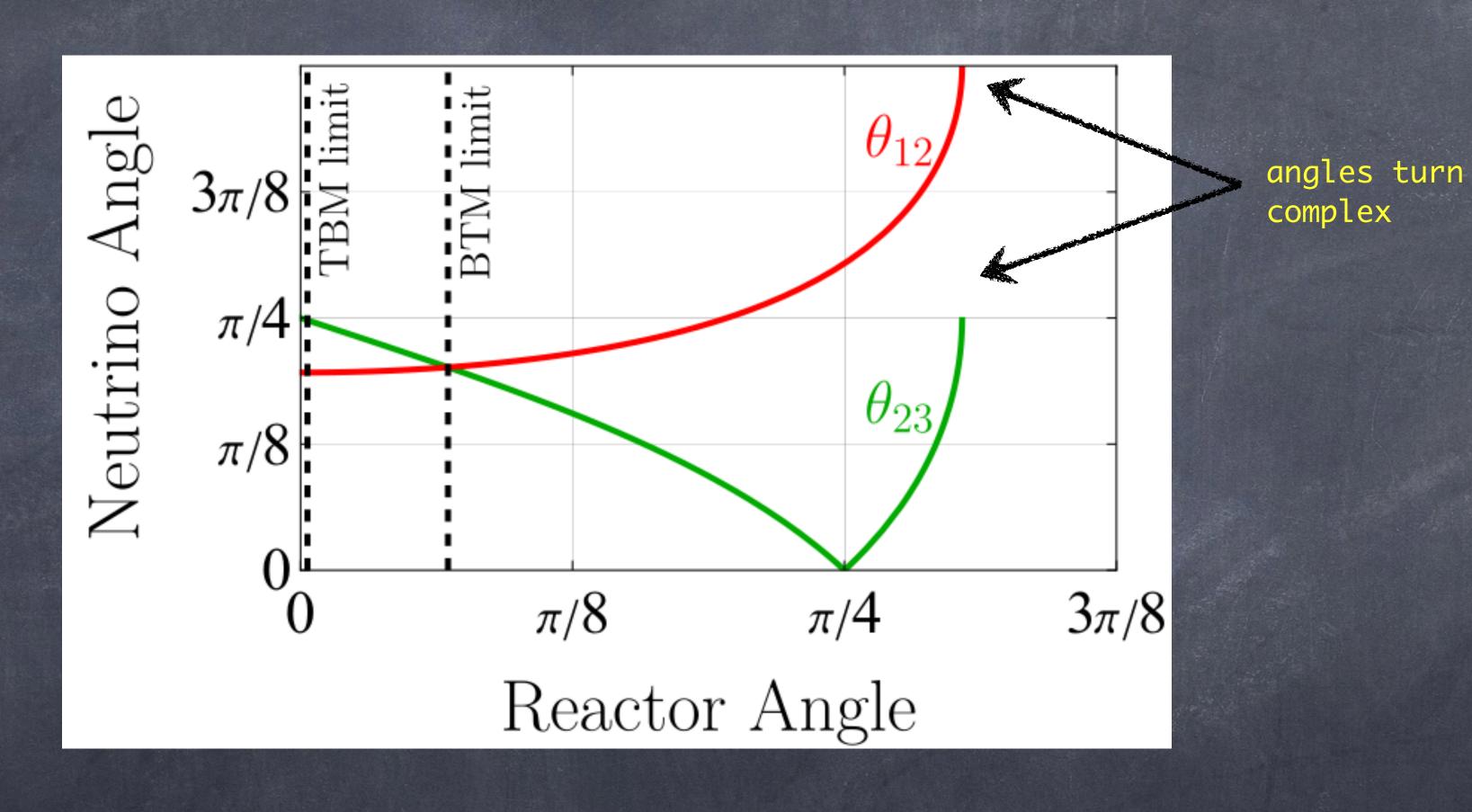
Enforce, say, $G_2(\theta_{ij})$ being equal to S

$$\cos(\theta_{23}) = \frac{1}{2}\sec(\theta_{13})\left(\sin(\theta_{13}) + \sqrt{3\cos^2(\theta_{13}) - 1}\right)$$

$$\cos(\theta_{12}) = \frac{\sec(\theta_{13})\sqrt{3}\cos(2\theta_{13}) + 1}{\sqrt{6}}$$

Trimaximality guaranteed for any θ_{13}

Trimaximality guaranteed for any θ_{13}



The Connection Between Mixings

A simple starting premise

What are the implications of a bitrimaximal MNSP made up of a tribimaximal neutrino transformation?

this BTM
$$U_{
m MNSP}=U_e^\dagger U_
u$$
 this TBM

The U_e matrix

$$U_e = \frac{1}{6} \begin{pmatrix} 2 + \sqrt{2} + \sqrt{6} & 2 - 2\sqrt{2} & 2 + \sqrt{2} - \sqrt{6} \\ 2 + \sqrt{2} - \sqrt{6} & 2 + \sqrt{2} + \sqrt{6} & 2 - 2\sqrt{2} \\ 2 - 2\sqrt{2} & 2 + \sqrt{2} - \sqrt{6} & 2 + \sqrt{2} + \sqrt{6} \end{pmatrix}$$

Entries in a row/column all add up to 1

$$\sum_{i=1}^{3} (U_e)_{ik} = 1, \ k = 1, 2, 3$$

$$\sum_{j=1}^{3} (U_e)_{kj} = 1, \ k = 1, 2, 3$$

In terms of three constants,

$$U_e = \begin{pmatrix} a & c & b \\ b & a & c \\ c & b & a \end{pmatrix}$$

$$a + b + c = 1$$

$$a \equiv \frac{1}{6}(2 + \sqrt{2} + \sqrt{6}) \approx 1$$

$$b \equiv \frac{1}{6}(2 + \sqrt{2} - \sqrt{6})$$

$$c \equiv \frac{1}{6}(2 - 2\sqrt{2})$$

Charged lepton mass matrix

$$M_e^{\text{Diag}} = U_e^{\dagger} M_e U_e = \text{Diag}\{|m_e|^2, |m_{\mu}|^2, |m_{\tau}|^2\}$$

 M_e won't be so simple. Solving for it,

$$M_{e} = \begin{pmatrix} a^{2} |m_{e}|^{2} + b^{2} |m_{\tau}|^{2} + c^{2} |m_{\mu}|^{2} & ab |m_{e}|^{2} + ac |m_{\mu}|^{2} + bc |m_{\tau}|^{2} & ab |m_{\tau}|^{2} + ac |m_{e}|^{2} + bc |m_{\mu}|^{2} \\ ab |m_{e}|^{2} + ac |m_{\mu}|^{2} + bc |m_{\tau}|^{2} & a^{2} |m_{\mu}|^{2} + b^{2} |m_{e}|^{2} + c^{2} |m_{\tau}|^{2} & ab |m_{\mu}|^{2} + ac |m_{\tau}|^{2} + bc |m_{e}|^{2} \\ ab |m_{\tau}|^{2} + ac |m_{e}|^{2} + bc |m_{\mu}|^{2} & ab |m_{\mu}|^{2} + ac |m_{\tau}|^{2} + bc |m_{e}|^{2} & a^{2} |m_{\tau}|^{2} + b^{2} |m_{\mu}|^{2} + c^{2} |m_{e}|^{2} \end{pmatrix}$$

$$a \equiv \frac{1}{6}(2 + \sqrt{2} + \sqrt{6}) \approx 1$$

$$b \equiv \frac{1}{6}(2+\sqrt{2}-\sqrt{6})$$

$$c \equiv \frac{1}{6}(2 - 2\sqrt{2})$$

Cabbibo-sized (≈ 0.23)

Charged lepton mass matrix

$$M_e^{\text{Diag}} = U_e^{\dagger} M_e U_e = \text{Diag}\{|m_e|^2, |m_{\mu}|^2, |m_{\tau}|^2\}$$

 M_e won't be so simple. Solving for it,

$$M_{e} = \begin{pmatrix} a^{2} |m_{e}|^{2} + b^{2} |m_{\tau}|^{2} + c^{2} |m_{\mu}|^{2} & ab |m_{e}|^{2} + ac |m_{\mu}|^{2} + bc |m_{\tau}|^{2} & ab |m_{\tau}|^{2} + ac |m_{e}|^{2} + bc |m_{\mu}|^{2} \\ ab |m_{e}|^{2} + ac |m_{\mu}|^{2} + bc |m_{\tau}|^{2} & a^{2} |m_{\mu}|^{2} + b^{2} |m_{e}|^{2} + c^{2} |m_{\tau}|^{2} & ab |m_{\mu}|^{2} + ac |m_{\tau}|^{2} + bc |m_{e}|^{2} \\ ab |m_{\tau}|^{2} + ac |m_{e}|^{2} + bc |m_{\mu}|^{2} & ab |m_{\mu}|^{2} + ac |m_{\tau}|^{2} + bc |m_{e}|^{2} & a^{2} |m_{\tau}|^{2} + b^{2} |m_{\mu}|^{2} + c^{2} |m_{e}|^{2} \end{pmatrix}$$

In this parametrization,

$$a \equiv \frac{1}{6}(2 + \sqrt{2} + \sqrt{6}) \approx 1$$

$$b \equiv \frac{1}{6}(2+\sqrt{2}-\sqrt{6})$$

$$c \equiv \frac{1}{6}(2 - 2\sqrt{2})$$

Cabbibo-sized (≈ 0.23)

$$U_e = \left(egin{array}{ccc} a & c & b \ b & a & c \ c & b & a \end{array}
ight)$$

$$M_e pprox |m_ au|^2 \left(egin{array}{ccc} b^2 & bc & ab \ bc & c^2 & ac \ ab & ac & a^2 \end{array}
ight)$$

neutrino sector: $Z_2 \times Z_2$

generators

$$U = \begin{pmatrix} -1 & 0 & 0 \\ 0 & 0 & -1 \\ 0 & -1 & 0 \end{pmatrix}$$

$$S = \frac{1}{3} \begin{pmatrix} -1 & 2 & 2 \\ 2 & -1 & 2 \\ 2 & 2 & -1 \end{pmatrix}$$

undiagonalized G_i elements, $G_i = U_{
u}G_i^{{
m Diag}}U_{
u}^{\dagger}$ @ TBM

Everett & Stuart (1501.044336)

neutrino sector: $Z_2 \times Z_2$

generators

$$U = \begin{pmatrix} -1 & 0 & 0 \\ 0 & 0 & -1 \\ 0 & -1 & 0 \end{pmatrix}$$

$$S = \frac{1}{3} \begin{pmatrix} -1 & 2 & 2 \\ 2 & -1 & 2 \\ 2 & 2 & -1 \end{pmatrix}$$

$$S = \frac{1}{3} \begin{pmatrix} -1 & 2 & 2 \\ 2 & -1 & 2 \\ 2 & 2 & -1 \end{pmatrix}$$

undiagonalized G_i elements, $G_i = U_{
u}G_i^{{
m Diag}}U_{
u}^{\dagger}$ @ TBM

Everett & Stuart (1501.044336)

charged leptons: Z_N

$$N=3$$

generator

$$T = U_e T^{\text{Diag}} U_e^{\dagger}$$

undiagonalized
$$T^{\mathrm{Diag}} = \mathrm{Diag}(\omega^2, 1, \omega)$$

$$\omega = e^{2\pi/3}$$

Properties of T

$$T^3 = 1$$

$$T^{\dagger}M_eT = M_e$$

$$(T^2)^{\dagger} M_e(T^2) = M_e$$

We have checked that

$$(SU)^2 = 1$$

$$(UT^{-1}UT)^3 = 1$$

$$(ST)^3 = 1$$

Crucially, only our chosen T permutation satisfies

$$(UT)^8 = 1$$

$$S = U(UT)^4 U(UT)^4$$

Properties of T

$$T^3 = 1$$

$$T^{\dagger}M_eT = M_e$$

$$(T^2)^{\dagger} M_e(T^2) = M_e$$

We have checked that

$$(SU)^2 = 1$$

$$(UT^{-1}UT)^3 = 1$$

$$(ST)^3 = 1$$

Crucially, only our chosen T permutation satisfies

$$(UT)^8 = 1$$

$$S = U(UT)^4 U(UT)^4$$

2-element presentation rules of $\Delta(96)$

brute-force scan

96 distinct products of S, T, U

```
₹U.T.T.U.T.U, S.T.T.S.U.S.T, S.T.U.S.U.T.S, T.T.U.T.U.T.U, T.U.S.U.S.T.T,
T.U.T.S.T.S.T, T.U.T.T.U.S.U, T.U.T.T.U.T.T, U.S.T.T.U.T.S, U.S.T.U.S.T.S,
U.S.T.U.S.U.T, U.T.S.T.T.U.S, U.T.S.U.S.T.U, U.T.T.S.T.S.T, U.T.T.S.T.T.S,
U.T.T.U.T.T.U, U.T.U.S.T.T.S, U.T.U.T.T.U.T, U.T.U.T.U.T.T, S.T.S.T.S.T.U.S,
S.T.S.T.T.S.T.T, S.T.S.U.S.T.T.U, S.T.T.S.U.T.S.T, S.T.T.U.T.U.T.S,
S.T.U.T.U.S.T.S, S.T.U.T.U.T.U.T, S.U.T.S.T.U.T.U, S.U.T.T.S.U.S.T,
S.U.T.T.U.S.T.U, S.U.T.U.S.U.S.T, S.U.T.U.T.T.S.T, S.U.T.U.T.T.T,
T.S.T.U.S.T.S.T, T.S.T.U.T.U.T.T, T.S.U.S.T.S.T.T, T.S.U.T.T.S.U.S,
T.T.S.T.S.T.S.U, T.T.S.T.T.S.T.T, T.T.S.T.U.T.T.U, T.T.S.T.U.T.U.S,
T.T.S.U.T.U.T.T, T.T.U.S.T.S.T.T, T.T.U.S.T.T.S.U, T.T.U.T.S.T.U.S,
T.T.U.T.U.T.U.S, T.U.S.T.S.T.U.S, T.U.S.T.S.U.T.S, T.U.S.T.T.S.T.S,
T.U.S.T.T.S.U.T, T.U.S.T.T.U.T.T, T.U.S.U.S.T.S.U, T.U.S.U.S.U.T.T,
T.U.T.T.S.U.S.T, T.U.T.T.U.T.S.T, T.U.T.U.S.T.S.U, U.S.T.S.T.S.U.T,
U.S.T.S.T.T.U.T, U.S.T.S.T.U.T.T, U.S.T.S.U.T.T.U, U.S.T.T.U.S.U.T,
U.S.T.U.S.T.S.T, U.S.T.U.T.T.U.S, U.T.S.T.T.S.U.S, U.T.S.T.T.U.T.S,
U.T.S.T.U.T.S.T, U.T.S.T.U.T.T.U, U.T.S.U.S.T.T.S, U.T.S.U.S.U.S.T,
U.T.S.U.T.T.S.U, U.T.S.U.T.U.T.S, U.T.T.S.T.S.T.S, U.T.T.S.T.U.S.T,
U.T.T.S.T.U.T.S, U.T.T.S.U.S.T.S, U.T.T.S.U.T.T.S, U.T.T.U.S.T.S.T,
U.T.T.U.S.T.T.U, U.T.T.U.S.T.U.S, U.T.T.U.S.U.T.T, U.T.T.U.T.T.U.S,
U.T.T.U.T.U.T.T, U.T.U.S.T.S.T.S, U.T.U.S.T.S.U.S, U.T.U.S.T.S.U.T,
U.T.U.S.T.T.S.T, U.T.U.S.T.T.U.T, U.T.U.S.T.U.S.U, U.T.U.S.U.S.T.T,
U.T.U.S.U.S.T.U, U.T.U.T.S.T.T.S, U.T.U.T.T.S.U.S, U.T.U.T.T.U.S.T,
U.T.U.T.U.S.T.U, U.T.U.T.U.T.T.S, U.T.U.T.U.T.T.U, U.T.U.T.U.T.U.S}
```

traces match $\Delta(96)$ character table

$\Delta(96)$	1	1'	2	3	$\widetilde{3}$	$\overline{3}$	3′	$\widetilde{3}'$	$\overline{3}'$	6
\mathcal{I}	1	1	2	3	3	3	3	3	3	6
$3C_4$	1	1	2	-1 + 2i	-1	-1 - 2i	-1 + 2i	-1	-1 - 2i	2
$3C_2$	1	1	2	-1	3	-1	-1	3	-1	-2
$3C_4'$	1	1	2	-1 - 2i	-1	-1 + 2i	-1 - 2i	-1	-1 + 2i	2
$6C_4''$	1	1	2	1	-1	1	1	-1	1	-2
$32C_{3}$	1	1	-1	0	0	0	0	0	0	0
$12C'_{2}$	1	-1	0	-1	-1	-1	1	1	1	0
$12C_{8}$	1	-1	0	i	1	-i	-i	-1	i	0
$12C_4'''$	1	-1	0	1	-1	1	-1	1	-1	0
$12C_{8}'$	1	-1	0	-i	1	i	i	-1	-i	0

CP violation (?)

So far, our MNSP matrix is bitrimaximal

$$U_{\text{MNSP}}(\theta_{12}^{\text{BTM}}, \theta_{23}^{\text{BTM}}, \theta_{13}^{\text{BTM}}, 0) = \frac{1}{\sqrt{3}} \begin{pmatrix} \frac{1}{2} \left(1 + \sqrt{3}\right) & 1 & \frac{1}{2} \left(\sqrt{3} - 1\right) \\ -1 & 1 & 1 \\ \frac{1}{2} \left(1 - \sqrt{3}\right) & 1 & \frac{1}{2} \left(-1 - \sqrt{3}\right) \end{pmatrix}$$

what if...

$$\theta_{12}^{\text{BTM}} = \theta_{23}^{\text{BTM}} = \tan^{-1}(\sqrt{3} - 1) \approx 36.21^{\circ}$$

$$\theta_{13}^{\mathrm{BTM}} = \sin^{-1}\left(\frac{1}{6}\left(3 - \sqrt{3}\right)\right) \approx 12.20^{\circ}$$

So far, our MNSP matrix is bitrimaximal

$$U_{\text{MNSP}}(\theta_{12}^{\text{BTM}}, \theta_{23}^{\text{BTM}}, \theta_{13}^{\text{BTM}}, 0) = \frac{1}{\sqrt{3}} \begin{pmatrix} \frac{1}{2} \left(1 + \sqrt{3}\right) & 1 & \frac{1}{2} \left(\sqrt{3} - 1\right) \\ -1 & 1 & 1 \\ \frac{1}{2} \left(1 - \sqrt{3}\right) & 1 & \frac{1}{2} \left(-1 - \sqrt{3}\right) \end{pmatrix}$$

$$\theta_{12}^{\text{BTM}} = \theta_{23}^{\text{BTM}} = \tan^{-1}(\sqrt{3} - 1) \approx 36.21^{\circ}$$

$$\theta_{13}^{\mathrm{BTM}} = \sin^{-1}\left(\frac{1}{6}\left(3 - \sqrt{3}\right)\right) \approx 12.20^{\circ}$$

what if...one leaves δ unevaluated?

So far, our MNSP matrix is bitrimaximal

$$U_{\text{MNSP}}(\theta_{12}^{\text{BTM}}, \theta_{23}^{\text{BTM}}, \theta_{13}^{\text{BTM}}, 0) = \frac{1}{\sqrt{3}} \begin{pmatrix} \frac{1}{2} \left(1 + \sqrt{3}\right) & 1 & \frac{1}{2} \left(\sqrt{3} - 1\right) \\ -1 & 1 & 1 \\ \frac{1}{2} \left(1 - \sqrt{3}\right) & 1 & \frac{1}{2} \left(-1 - \sqrt{3}\right) \end{pmatrix}$$

$$\theta_{12}^{\rm BTM} = \theta_{23}^{\rm BTM} = \tan^{-1}(\sqrt{3} - 1) \approx 36.21^{\circ}$$

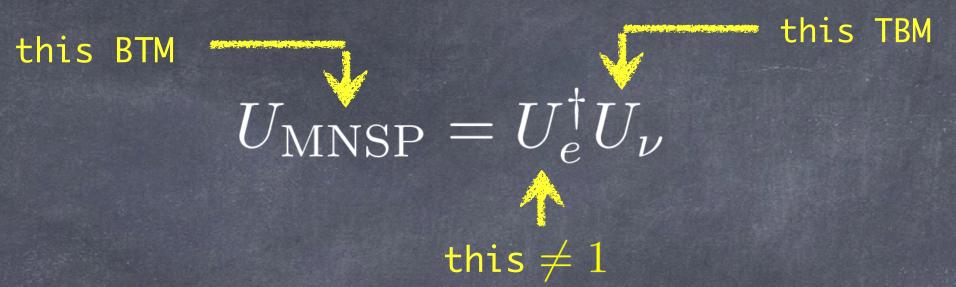
$$\theta_{13}^{\mathrm{BTM}} = \sin^{-1}\left(\frac{1}{6}\left(3 - \sqrt{3}\right)\right) \approx 12.20^{\circ}$$

what if...one leaves δ unevaluated?

$$U_{\text{MNSP}}(\theta_{12}^{\text{BTM}}, \theta_{23}^{\text{BTM}}, \theta_{13}^{\text{BTM}}, \boldsymbol{\delta}) = \begin{pmatrix} \frac{\frac{1}{6}\left(3 + \sqrt{3}\right)}{\frac{3\left(\sqrt{3} - 1\right) + \left(2\sqrt{3} - 3\right)e^{i\delta}}{6\sqrt{3} - 15}} & \frac{\frac{1}{\sqrt{3}}}{\frac{6\sqrt{3} - 15}{6\sqrt{3} - 15}} & \frac{\frac{1}{6}\left(3 - \sqrt{3}\right)e^{-i\delta}}{\frac{6\sqrt{3} - 15}{6\sqrt{3} - 15}} & \frac{\frac{1}{\sqrt{3}}}{\frac{1}{\sqrt{3}}} & -\frac{1}{6}\left(3 + \sqrt{3}\right) \end{pmatrix}$$

we'll keep the name, $U^{\mathrm{BTM}}(\delta)$

What happens with our earlier BTM-TBM connection? Earlier,



Now,

$$U_{\text{MNSP}}(\delta) = U_e^{\dagger}(\delta)U_{\nu}(\delta)$$

What happens with our earlier BTM-TBM connection? Earlier,

this BTM
$$U_{
m MNSP}=U_e^\dagger U_
u$$
 this $eq 1$

Now,

[erase TBM argument]

$$U_{\text{MNSP}}(\delta) = U_e^{\dagger}(\delta)U_{\nu}(\delta)$$

The δ -dependence can only come from $U_e(\delta)$. This matrix isn't friendly though,

$$U_e(\delta)_{13} = \frac{1}{36 - 30\sqrt{3}} \left(-6(-1 - 4\sqrt{2} + \sqrt{3} + 2\sqrt{6}) + (6 - 3\sqrt{2} - 4\sqrt{3} + \sqrt{6})e^{-i\delta} \right)$$

etc.

Only U_e acquires the CPV phase. This affects the generator in the charged lepton sector

$$T = U_e T^{\text{Diag}} U_e^{\dagger} \longrightarrow T(\delta) = U_e(\delta) T^{\text{Diag}} U_e(\delta)^{\dagger}$$

$$\left(\begin{array}{cccc} \omega^2 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & \omega \end{array} \right)$$

Only U_e acquires the CPV phase. This affects the generator in the charged lepton sector

$$\begin{pmatrix} \omega^2 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & \omega \end{pmatrix}$$

$$T = U_e T^{\text{Diag}} U_e^{\dagger} \longrightarrow T(\delta) = U_e(\delta) T^{\text{Diag}} U_e(\delta)^{\dagger}$$

The neutrino sector generators still defined through the old U^{TBM}

$$U = U^{\mathrm{TBM}} G_3^{\mathrm{Diag}} U^{\mathrm{TBM}\dagger}$$
 $S = U^{\mathrm{TBM}} G_2^{\mathrm{Diag}} U^{\mathrm{TBM}\dagger}$

$$S = U^{\mathrm{TBM}} G_2^{\mathrm{Diag}} U^{\mathrm{TBM}\dagger}$$

With some luck, the $T(\delta)$, U, and S satisfy algebraic relations

 $T(\delta)$ is an order-3 element,

$$T(\delta)^3 = 1 \quad \checkmark$$

 $T(\delta)$ is an order-3 element,

$$T(\delta)^3 = 1$$

There's more, with U it satisfies

$$[UT^{-1}(\delta)UT(\delta)]^3 = 1 \quad \checkmark$$

$$[UT(\delta)]^8 = 1 \quad \checkmark$$

Not expected at all! While U is made of 0's and -1's, $T(\delta)$ is highly nontrivial (square roots and δ 's everywhere)

Be cautious though,

$$(SU)^2 = 1 \qquad \checkmark$$

$$[ST(\delta)]^3 \neq 1$$

The usual group element S doesn't do the job here. However, in the 2-element presentation of $\Delta(96)$ the S was never independent,

$$S = U(UT)^4 U(UT)^4$$

Be cautious though,

$$(SU)^2 = 1 \qquad \checkmark$$

$$[ST(\delta)]^3 \neq 1$$

The usual group element S doesn't do the job here. However, in the 2-element presentation of $\Delta(96)$ the S was never independent,

$$S = U(UT)^4 U(UT)^4$$

Perhaps the δ -dependent version of it works?

Define

$$S = U[UT(\delta)]^4 U[UT(\delta)]^4$$

Horrendous as a matrix product, yet

$$S^2(\delta) = 1$$

$$[\mathcal{S}(\delta)U]^2 = 1 \qquad \checkmark$$

Define

$$\mathcal{S} = U[UT(\delta)]^4 U[UT(\delta)]^4$$

Horrendous as a matrix product, yet

$$S^2(\delta) = 1$$

$$[\mathcal{S}(\delta)U]^2 = 1 \qquad \checkmark$$

and as a bonus

$$\left[\mathcal{S}(\delta)T(\delta)\right]^3 = 1 \qquad \checkmark \checkmark$$

The group elements U, $\mathcal{S}(\delta)$, and $T(\delta)$ fulfill the $\Delta(96)$ symmetry!

BIG question Is this δ physical? The group elements U, $\mathcal{S}(\delta)$, and $T(\delta)$ fulfill the $\Delta(96)$ symmetry!

BIG question Is this δ physical?

NO

Every single algebraic relation holds for any value of δ

Concluding remarks

- We exploited the trimaximal feature of two mixing patterns (TBM & BTM) to extract the parametric behavior of two angles in function of a third one
- We briefly looked at the unitary matrix U_e in the charged leptons that, together with a tribimaximal neutrino transformation, results in a bitrimaximal MNSP
- The flavor group in the connection above is found to be $\Delta(96) \, \rm by \, \, brute$ force
- The group persists as δ is included. However, this CPV phase fails to be physical

Concluding remarks

- We exploited the trimaximal feature of two mixing patterns (TBM & BTM) to extract the parametric behavior of two angles in function of a third one
- We briefly looked at the unitary matrix U_e in the charged leptons that, together with a tribimaximal neutrino transformation, results in a bitrimaximal MNSP
- The flavor group in the connection above is found to be $\Delta(96)$ by brute force
- The group persists as δ is included. However, this CPV phase fails to be physical

i Gracias!

BACKUP

TBM & BTM predictions

$$\theta_{12}^{\mathrm{TBM}} = \cos^{-1}(\sqrt{2/3}) \approx 35.24^{\circ}, \quad \theta_{13}^{\mathrm{TBM}} = 0^{\circ}, \quad \theta_{23}^{\mathrm{TBM}} = \pi/4 = 45^{\circ}$$

$$\theta_{12}^{\text{BTM}} = \theta_{23}^{\text{BTM}} = \tan^{-1}\left(\sqrt{3} - 1\right) \approx 36.21^{\circ}, \quad \theta_{13}^{\text{BTM}} = \sin^{-1}\left(\frac{1}{6}\left(3 - \sqrt{3}\right)\right) \approx 12.20^{\circ}.$$

T-generator permutations

$$\begin{split} T_1^{\text{Diag}} &= \text{Diag}(1,\omega,\omega^2), \ T_2^{\text{Diag}} = \text{Diag}(\omega^2,1,\omega), \ T_3^{\text{Diag}} = \text{Diag}(\omega,\omega^2,1), \\ (T_1^{\text{Diag}})^2 &= \text{Diag}(1,\omega^2,\omega), \ (T_2^{\text{Diag}})^2 = \text{Diag}(\omega,1,\omega^2), \ (T_3^{\text{Diag}})^2 = \text{Diag}(\omega^2,\omega,1), \end{split}$$

$$\omega^2 T_1^{\mathrm{Diag}} = T_2^{\mathrm{Diag}} = \omega T_3^{\mathrm{Diag}} \quad \text{and} \quad \omega (T_1^{\mathrm{Diag}})^2 = (T_2^{\mathrm{Diag}})^2 = \omega^2 (T_3^{\mathrm{Diag}})^2.$$